Implementing Bayes' Rule with Neural Fields
نویسندگان
چکیده
Bayesian statistics is has been very successful in describing behavioural data on decision making and cue integration under noisy circumstances. However, it is still an open question how the human brain actually incorporates this functionality. Here we compare three ways in which Bayes rule can be implemented using neural fields. The result is a truly dynamic framework that can easily be extended by non-Bayesian mechanisms such as learning and memory.
منابع مشابه
Neural-network Modelling of Bayesian Learning and Inference
We propose a modular neural-network structure for implementing the Bayesian framework for learning and inference. Our design has three main components, two for computing the priors and likelihoods based on observations and one for applying Bayes’ rule. Through comprehensive simulations we show that our proposed model succeeds in implementing Bayesian learning and inference. We also provide a no...
متن کاملImplementing a Bayes Filter in a Neural Circuit: The Case of Unknown Stimulus Dynamics
In order to interact intelligently with objects in the world, animals must first transform neural population responses into estimates of the dynamic, unknown stimuli that caused them. The Bayesian solution to this problem is known as a Bayes filter, which applies Bayes' rule to combine population responses with the predictions of an internal model. The internal model of the Bayes filter is base...
متن کاملBayesian decision making using neural fields
Bayesian statistics has become a popular framework in various fields of experimental psychology such as signal detection theory, speech recognition, cue integration and decision making. However, it is still an open question how the human brain actually incorporates this functionality. One assumption is that the activities of populations of neurons encode probability distributions. Indeed, it ha...
متن کاملTopographic Object Recognition through Shape
Chapter 1: INTRODUCTION Chapter 2: SHAPE-BASED DESCRIPTION 2.1 Fourier Descriptors 2.2 Moment Invariants 2.3 Scalar Descriptors Chapter 3: CLASSIFICATION 3.1 Supervised v Unsupervised Classification 3.2 Classification using Bayes Theorem 3.3 Implementing Bayesian Classification Chapter 4: COMBINING CLASSIFIERS 4.1 The Fusion Model 4.2 Theory 4.2.1 The Product Rule 4.2.2 Sum Rule 4.3 Classifier ...
متن کاملS3PSO: Students’ Performance Prediction Based on Particle Swarm Optimization
Nowadays, new methods are required to take advantage of the rich and extensive gold mine of data given the vast content of data particularly created by educational systems. Data mining algorithms have been used in educational systems especially e-learning systems due to the broad usage of these systems. Providing a model to predict final student results in educational course is a reason for usi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008